Positions & Education

Positions


Education


Qualification



Activities

Academic Activities

Research Projects


Research and Lecturing Visits


Memberships



Scientific Publications

  1. P. Fernández, A. Lančinskas, B. Pelegrín, J. Žilinskas (2022). A discrete competitive facility location model with proportional and binary rules sequentially applied. Optimization Letters. DOI:10.1007/s11590-022-01938-x.
  2. J. Žilinskas, A. Lančinskas, M.R. Guarracino (2021). Pooled testing with replication as a mass testing strategy for the COVID-19 pandemics. Scientific Reports, DOI:10.1038/s41598-021-83104-4.
  3. P. Fernández, B. Pelegrín, A. Lančinskas, J. Žilinskas (2021). Exact and Heuristic Solutions of a Discrete Competitive Location Model with Pareto-Huff Customer Choice Rule. Journal of Computational and Applied Mathematics, DOI:doi.org/10.1016/j.cam.2020.113200.
  4. A. Lančinskas, P. Fernández, B. Pelegrín, J. Žilinskas (2020). Discrete Competitive Facility Location by Ranking Candidate Locations. In: Data Science: New Issues, Challenges and Applications, vol 869 of Studies in Computational Intelligence, pp. 145−163, DOI:10.1007/978-3-030-39250-5_8
  5. P. Fernández, A. Lančinskas, B. Pelegrín, J. Žilinskas (2020). A Discrete Competitive Facility Location Model with Minimal Market Share Constraints and Equity-Based Ties Breaking Rule. Informatica, 31(2):205−224. ISSN:0868-4952, DOI:https://doi.org/10.15388/20-INFOR410
  6. A. Lančinskas, J. Žilinskas, P. Fernández, B. Pelegrín (2020). Solution of asymmetric discrete competitive facility location problems using ranking of candidate locations. Soft Computing, DOI:https://doi.org/10.1007/s00500-020-05106-0.
  7. A. Lančinskas, J. Žilinskas, P. Fernández, B. Pelegrín (2019). Ranking-based Discrete Optimization Algorithm for Asymmetric Competitive Facility Location. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2019), pp. 149−150. ISBN:978-1-4503-6748-6, DOI:10.1145/3319619.3321893
  8. A. Lančinskas, P. Fernández, B. Pelegrín, J. Žilinskas (2019). Ranking-based algorithm for facility location with constraints. In: AIP Proceedings, vol. 2070. DOI:10.1063/1.5089997
  9. P. Fernández, B. Pelegrín, A. Lančinskas, J. Žilinskas (2018). The Huff Versus the Pareto-Huff Customer Choice Rules in a Discrete Competitive Location Model. In: Computational Science and Its Applications (ICCSA 2018), vol. 10961 of Lecture Notes in Computer Science, pp. 583−592, DOI:https://doi.org/10.1007/978-3-319-95165-2_41
  10. G. Miranda, A. Lančinskas, Y. González (2017). Single and multi-objective genetic algorithms for the container loading problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO17), pp. 291−292. ISBN:978-1-4503-4939-0, DOI:10.1145/3067695.3076085
  11. E. Filatovas, A. Lančinskas, O. Kurasova, J. Žilinskas (2017). A preference-based multi-objective evolutionary algorithm R-NSGA-II with stochastic local search. Central European Journal of Operations Research, 25(4):859−878. ISSN:1435-246X, DOI:10.1007/s10100-016-0443-X
  12. A. Lančinskas, P. Fernández, B. Pelegrín, J. Žilinskas (2017) Improving solution of discrete competitive facility location problems. Optimization Letters, 11(2):259−270. ISSN:1862-4472, DOI:10.1007/s11590-015-0930-3
  13. A. Lančinskas, J. Žilinskas (2016). Preference-based Multi-Objective Single Agent Stochastic Search. In: Proceedings of the XIII Global Optimization Workshop (GOW'16), pp. 121−124. ISBN:978-989-20-6764-3.
  14. A. Lančinskas, P. Fernández, B. Pelegrín, J. Žilinskas (2016) Estimating the Pareto Front of a Hard Bi-criterion Competitive Facility Location Problem. In: Advances in Stochastic and Deterministic Global Optimization, vol. 107 of the series Springer Optimization and Its Applications, 255−272. DOI:10.1007/978-3-319-29975-4_14
  15. P. Fernández, B. Pelegrín, A. Lančinskas, J. Žilinskas (2017) New heuristic algorithms for discrete competitive location problems with binary and partially binary customer behavior. Computers and Operation Research, 79:12−18. ISSN:0305-0548, DOI:http://dx.doi.org/10.1016/j.cor.2016.10.002
  16. A. Lančinskas, P. Fernández, B. Pelegrín, J. Žilinskas (2016) Solution Of Discrete Competitive Facility Location Problem For Firm Expansion. Informatica, 27(2):451−462. ISSN:0868-4952,DOI: http://dx.doi.org/10.15388/Informatica.2016.94. [BibTex]
  17. D. Evangelista, A. Zuccaro, A. Lančinskas, J. Žilinskas, M.R. Guarracino (2016) A web-oriented software for the optimization of pooled experiments in NGS for detection of rare mutations. BMC Research Notes, 9(111):1−7. ISSN:1756-0500, DOI:10.1186/s13104-016-1889-6. [BibTex]
  18. E. Hendrix, A. Lančinskas (2015) On benchmarking stochastic global optimization algorithms. Informatica, 26(4):649−662. ISSN:0868-4952 [BibTex]
  19. V. Tiešis, A. Lančinskas, V. Marcinkevičius (2015) Analysis of Genetic Risk Assessment Methods. Lietuvos matematikos rinkinys, 56:117−122. ISSN:0132-2818, DOI:10.15388/LMR.A.2015.19
  20. A. Lančinskas, P.M. Ortigosa, J. Žilinskas (2015) Solution of Bi-objective Competitive Facility Location Problem Using Parallel Stochastic Search Algorithm. In: Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015), pp. 7−9. ISBN:978-84-608-2581-4.
  21. A. Lančinskas, P.M. Ortigosa, and J. Žilinskas (2015) Parallel optimization algorithm for competitive facility location. Mathematical Modelling and Analysis, 20(5):619−640. ISSN 1392-6292, DOI:10.3846/13926292.2015.1088903
  22. A. Lančinskas, J. Žilinskas (2014) Parallel Shared-Memory Multi-Objective Stochastic Search for Competitive Facility Location. In: Euro-Par 2014: Parallel Processing Workshops, vol. 8805 of Lecture Notes in Computer Science, pp. 71−82. ISBN:978-3-319-14324-8, DOI:10.1007/978-3-319-14325-5_7
  23. R. Baronas, A. Lančinskas, A. Žilinskas (2014) Optimization of Bi-Layer Biosensors: Trade-off Between Sensitivity and Enzyme Volume. Baltic Journal of Modern Computing, 2(4):285−296. ISSN:2255-8942
  24. J. Žilinskas, A. Lančinskas, M.R. Guarracino (2014) Application of Multi-Objective Optimization to Pooled Experiments of Next Generation Sequencing for Detection of Rare MutationsPLoS ONE, 9(9):e104992. DOI:10.1371/journal.pone.0104992
  25. A. Lančinskas, E.M.T. Hendrix, J. Žilinskas (2014) On Benchmarking Stochastic Global Optimization Algorithms. In: Proceedings of The XII Global Optimization Workshop (MAGO 2014), pp. 9−12.
  26. A. Lančinskas, J. Žilinskas (2014) Parallel Multi-objective Memetic Algorithm for Competitive Facility Location. In: Parallel Processing and Applied Mathematics, vol. 8385 of Lecture Notes in Computer Science, pp. 354−363. ISSN:0302-9743, DOI:10.1007/978-3-642-55195-6_33
  27. R. Baronas, J. Kulys, A. Lančinskas, A. Žilinskas (2014) Effect of Diffusion Limitations on the Multianalyte Determination from Biased Biosensor Response. Sensors, 14(3):4634−4656. ISSN:1424-8220, DOI:10.3390/s140304634
  28. A. Lančinskas, P.M. Ortigosa, J. Žilinskas (2013) Multi-objective Single Agent Stochastic Search in Non-dominated Sorting Genetic Algorithm. Nonlinear Analysis: Modelling and Control, 18(3):293−313. ISSN:1392-5113
  29. R. Baronas, J. Kulys, A. Žilinskas, A. Lančinskas, D. Baronas (2013) Optimization of the Multianalyte Determination with Biased Biosensor Response. Chemometrics and Inteligent Laboratory Systems, 126:108−116. ISSN:0169-7439, DOI:10.1016/j.chemolab.2013.05.003
  30. A. Lančinskas, J. Žilinskas (2013) Solution of Multi-Objective Competitive Facility Location Problems Using Parallel NSGA-II on Large Scale Computing Systems. In: Applied Parallel and Scientific Computing, vol. 7782 of Lecture Notes in Computer Science, pp. 422−433. ISSN:0302-9743, DOI:10.1007/978-3-642-36803-5_31
  31. A. Lančinskas, J. Žilinskas (2012) Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm. In: Parallel Processing and Applied Mathematics, vol. 7204 of Lecture Notes in Computer Science, pp. 371−380. ISSN:0302-9743, DOI:10.1007/978-3-642-31500-8_38
  32. A. Lančinskas, J. Žilinskas, P.M. Ortigosa (2011) Local Optimization in Global Multi-Objective Optimization Algorithms. In: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC 2011), Salamanca, Spain, October 19−21, pp. 323−328. ISBN:978-1-4577-1122-0, DOI:10.1109/NaBIC.2011.6089613
  33. A. Lančinskas, J. Žilinskas, P.M. Ortigosa (2010) Investigation of Parallel Particle Swarm Optimization Algorithm With Reduction of the Search Area. In: 2010 IEEE International Conference on Cluster Computing Workshops and Posters, Heraklion, Crete, Greece, September 20−24, pp. 1−5. ISBN:978-1-4244-8395-2, DOI:10.1109/CLUSTERWKSP.2010.5613108
  34. A. Lančinskas, J. Žilinskas (2010) Methods for generation of random numbers in parallel stochastic algorithms for global optimization. Journal of Young Scientists, 2(27):118−122. ISSN:1648-8776
  35. A. Lančinskas, V. Jadzgevičienė (2010) Visual Analysis of Questionnairy Data. Innovative Infotechnologies for Science, Business and Education, 1(8):8−11. ISSN:2029-1035


Presenations at Scientific Conferences

  1. 12th International Workshop on Data Analysis Methods for Software Systems. Druskininkai, Lithuania, 2021 December 2−4 (poster presentation)
  2. World Congress on Global Optimization 2021 (WCGO 2021). Athens, Greece, 2021 July 7−10 (online presentation)
  3. 11th International Workshop on Data Analysis Methods for Software Systems. Druskininkai, Lithuania, 2019 November 28−30
  4. The Genetic and Evolutionary Computation Conference (GECCO 2019). Prague, Czech Republic, 2019 July 13−17 (poster presentation)
  5. 30th European Conference on Operational Research (EURO 2019). Dublin, Ireland, 2019 June 23−26
  6. 10th International Workshop on Data Analysis Methods for Software Systems. Druskininkai, Lithuania, 2018 November 29 − December 1 (poster presentation)
  7. XIV Global Optimization Workshop (LeGO 2018). Leiden, The Netherlands, 2018 September 18−21
  8. 29th European Conference on Operational Research (EURO 2018). Valencia, Spain, 2018 July 8−11
  9. Optimization 2017. Lisbon, Portugal, 2017 September 6−8
  10. HiPEAC 2017 Conference. Stockholm, Sweden, 2017 January 23−25 (without presentation)
  11. XIII Global Optimization Workshop (GOW'16). Braga, Portugal, 2016 September 4−8
  12. HiPEAC 2016 Conference. Prague, Czech Republic, 2016 January 18−20 (poster presentation)
  13. Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Cracow, Poland, 2015 September 10 (poster presentation)
  14. Joint ORSC/EURO International Conference 2015 on Continuous Optimization. Shanghai, China, 2015 May 10−12
  15. 6th Veszprem Optimization Conference: Advanced Algorithms (VOCAL2014). Veszprem, Hungary, 2014 December 14−17
  16. 6th International Workshop "Data Analysis Methods for Software Systems". Druskininkai, Lithuania, 2014 December 4−6
  17. XII Global Optimization Workshop (MAGO 2014). Malaga, Spain, 2014 September 1−4
  18. First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto, Portugal, 2014 August 27−28
  19. 20th Conference of the International Federation of Operational Research Societies (IFORS 2014). Barcelona, Spain, 2014 July 13−18
  20. 5th International Seminar "Data Analysis Methods for Software Systems". Druskininkai, Lithuania, 2013 December 5−7 (poster presentation)
  21. 22nd International Conference on Multiple Criteria Decision Making. Malaga, Spain, 2013 June 17−21
  22. ComplexHPC Spring School 2013: Heterogeneous Computing − Impact on Algorithms. Uppsala, Sweden, 2013 June 3−7 (poster presentation)
  23. COST Action IC0805 "Open Network for High-Performance Computing on Complex Environments" Working Groups Meeting. Madrid, Spain, 2013 April 15−16
  24. 4th International Seminar "Data Analysis Methods for Software Systems". Druskininkai, Lithuania, 2012 December 6−8
  25. 25th European Conference on Operational Research (EURO 2012). Vilnius, Lithuania, 2012 July 8−11
  26. 2nd Conference of Junior Researchers "Tarpdalykiniai tyrimai fiziniuose ir technologiniuose moksluose". Vilnius, Lithuania, 2012 February 14
  27. 2nd Workshop of COST Action IC0805 "Open Network for High-Performance Computing on Complex Environments". Timisoara, Romania, 2012 January 25−27
  28. Third World Congress on Nature and Biologically Inspired Computing (NaBIC 2011). Salamanca, Spain, 2011 October 19−21
  29. 4th Conference of Junior Researchers "Operacijų tyrimai versle, inžinerijoje ir informacinėse technologijose". Kaunas, Lithuania, 2011 September 30
  30. ComplexHPC Spring School 2011: HPDC Middleware, Environments, and Tools. Amsterdam, The Netherlands, 2011 May 9−13 (poster presentation)
  31. 1st Conference of Junior Researchers "Fizinių ir technologijos mokslų tarpdalykiniai taikymai". Vilnius, Lithuania, 2011 February 8
  32. IEEE International Conference on Cluster Computing Workshops and Posters 2010. Heraklion, Crete, Greece, 2010 September 20−24
  33. International Conference of Young Scientists. Šiauliai, Lithuania, 2010 April 29−30. 2nd International Conference on Innovative Information Technologies (IIT). Vilnius, Lithuania, 2008, October 16−18

Top